Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery
نویسنده
چکیده
Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.
منابع مشابه
Synthesis and structural properties of Polyvinylpyrrolidone based nanocomposite hydrogels for isoniazid drug delivery
In this study, several examples of hydrogels and nanocomposite hydrogels based on PVP with different content of montmorillonite nanoclay were prepared. Then, the swelling of hydrogels and kinetics of drug delivery of hydrogel in an environment similar to the body (pH 7.4) were examined. The effect of nanoparticle different percentages on the hydrogel was clearly observed. Then kinetics of drug ...
متن کاملDesign, Synthesis and Characterization of Nano niosomal Delivery system Containing paclitaxel drug for Drug Delivery to Osteosarcoma Cell Line (Saos-2)
Introduction: Osteosarcoma is one of the cancers that current treatment strategies using chemotherapy drugs have not been very successful due to multiple drug resistance and harmful side effects. The use of nano-niosomal systems in the delivery of paclitaxel is one of the attractive approaches to overcome these limitations. paclitaxel is a powerful anticancer agent used in the treatment of many...
متن کاملNew drug delivery systems based on polymeric silk fibroin
Nowadays, design and synthesis of efficient drug delivery systems are of vital importance in order to optimize the efficacy of therapeutics and reducing side effects. So far, many drug delivery systems have been designed, among them, natural polymer-based systems have attracted the most attention. Silk fibroin (SF) as a natural polymer have several unique properties including excellent biocompa...
متن کاملSynthesis and Characterization of an Enzyme Mediated in situ Forming Hydrogel Based on Gum Tragacanth for Biomedical Applications
Background: The excellent biocompatibility, biodegradability and biological properties of the hydrogels, fabricated using natural polymers, especially polysaccharides, are very advantageous for biomedical applications. Gum tragacanth (GT) is a heterogeneous highly branched anionic polysaccharide, which has been used extensively in food and pharmaceutical industries. Despite, its desirable prop...
متن کاملFormulation Design and Evaluation of Hydrogel-Based Metronidazole Bioadhesive Tablet for Vaginal Candidiasis
Hydrogel Based Metronidazole Bioadhesive Tablet (HMBT) was prepared as a novel vaginal delivery system to achieve Controlled release of drug from the tablet for vaginal candidiasis. The highly swollen hydrogel were prepared by dissolving chitosan in acetic acid solution containing drug, followed by neutralisation with sodium hydroxide and characterized by SEM, DSC and FT-IR and evaluated for % ...
متن کامل